1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /*      Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T     */
  26 /*        All Rights Reserved   */
  27 
  28 #include <sys/param.h>
  29 #include <sys/types.h>
  30 #include <sys/vmparam.h>
  31 #include <sys/systm.h>
  32 #include <sys/signal.h>
  33 #include <sys/stack.h>
  34 #include <sys/regset.h>
  35 #include <sys/privregs.h>
  36 #include <sys/frame.h>
  37 #include <sys/proc.h>
  38 #include <sys/psw.h>
  39 #include <sys/siginfo.h>
  40 #include <sys/cpuvar.h>
  41 #include <sys/asm_linkage.h>
  42 #include <sys/kmem.h>
  43 #include <sys/errno.h>
  44 #include <sys/bootconf.h>
  45 #include <sys/archsystm.h>
  46 #include <sys/debug.h>
  47 #include <sys/elf.h>
  48 #include <sys/spl.h>
  49 #include <sys/time.h>
  50 #include <sys/atomic.h>
  51 #include <sys/sysmacros.h>
  52 #include <sys/cmn_err.h>
  53 #include <sys/modctl.h>
  54 #include <sys/kobj.h>
  55 #include <sys/panic.h>
  56 #include <sys/reboot.h>
  57 #include <sys/time.h>
  58 #include <sys/fp.h>
  59 #include <sys/x86_archext.h>
  60 #include <sys/auxv.h>
  61 #include <sys/auxv_386.h>
  62 #include <sys/dtrace.h>
  63 #include <sys/brand.h>
  64 #include <sys/machbrand.h>
  65 #include <sys/cmn_err.h>
  66 
  67 extern const struct fnsave_state x87_initial;
  68 extern const struct fxsave_state sse_initial;
  69 
  70 /*
  71  * Map an fnsave-formatted save area into an fxsave-formatted save area.
  72  *
  73  * Most fields are the same width, content and semantics.  However
  74  * the tag word is compressed.
  75  */
  76 static void
  77 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
  78 {
  79         uint_t i, tagbits;
  80 
  81         fx->fx_fcw = fn->f_fcw;
  82         fx->fx_fsw = fn->f_fsw;
  83 
  84         /*
  85          * copy element by element (because of holes)
  86          */
  87         for (i = 0; i < 8; i++)
  88                 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
  89                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
  90 
  91         /*
  92          * synthesize compressed tag bits
  93          */
  94         fx->fx_fctw = 0;
  95         for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
  96                 if ((tagbits & 3) != 3)
  97                         fx->fx_fctw |= (1 << i);
  98 
  99         fx->fx_fop = fn->f_fop;
 100 
 101 #if defined(__amd64)
 102         fx->fx_rip = (uint64_t)fn->f_eip;
 103         fx->fx_rdp = (uint64_t)fn->f_dp;
 104 #else
 105         fx->fx_eip = fn->f_eip;
 106         fx->fx_cs = fn->f_cs;
 107         fx->__fx_ign0 = 0;
 108         fx->fx_dp = fn->f_dp;
 109         fx->fx_ds = fn->f_ds;
 110         fx->__fx_ign1 = 0;
 111 #endif
 112 }
 113 
 114 /*
 115  * Map from an fxsave-format save area to an fnsave-format save area.
 116  */
 117 static void
 118 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
 119 {
 120         uint_t i, top, tagbits;
 121 
 122         fn->f_fcw = fx->fx_fcw;
 123         fn->__f_ign0 = 0;
 124         fn->f_fsw = fx->fx_fsw;
 125         fn->__f_ign1 = 0;
 126 
 127         top = (fx->fx_fsw & FPS_TOP) >> 11;
 128 
 129         /*
 130          * copy element by element (because of holes)
 131          */
 132         for (i = 0; i < 8; i++)
 133                 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
 134                     sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
 135 
 136         /*
 137          * synthesize uncompressed tag bits
 138          */
 139         fn->f_ftw = 0;
 140         for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
 141                 uint_t ibit, expo;
 142                 const uint16_t *fpp;
 143                 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
 144 
 145                 if ((tagbits & 1) == 0) {
 146                         fn->f_ftw |= 3 << (i << 1);      /* empty */
 147                         continue;
 148                 }
 149 
 150                 /*
 151                  * (tags refer to *physical* registers)
 152                  */
 153                 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
 154                 ibit = fpp[3] >> 15;
 155                 expo = fpp[4] & 0x7fff;
 156 
 157                 if (ibit && expo != 0 && expo != 0x7fff)
 158                         continue;                       /* valid fp number */
 159 
 160                 if (bcmp(fpp, &zero, sizeof (zero)))
 161                         fn->f_ftw |= 2 << (i << 1);      /* NaN */
 162                 else
 163                         fn->f_ftw |= 1 << (i << 1);      /* fp zero */
 164         }
 165 
 166         fn->f_fop = fx->fx_fop;
 167 
 168         fn->__f_ign2 = 0;
 169 #if defined(__amd64)
 170         fn->f_eip = (uint32_t)fx->fx_rip;
 171         fn->f_cs = U32CS_SEL;
 172         fn->f_dp = (uint32_t)fx->fx_rdp;
 173         fn->f_ds = UDS_SEL;
 174 #else
 175         fn->f_eip = fx->fx_eip;
 176         fn->f_cs = fx->fx_cs;
 177         fn->f_dp = fx->fx_dp;
 178         fn->f_ds = fx->fx_ds;
 179 #endif
 180         fn->__f_ign3 = 0;
 181 }
 182 
 183 /*
 184  * Map from an fpregset_t into an fxsave-format save area
 185  */
 186 static void
 187 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
 188 {
 189 #if defined(__amd64)
 190         bcopy(fp, fx, sizeof (*fx));
 191 #else
 192         const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
 193 
 194         fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
 195         fx->fx_mxcsr = fc->mxcsr;
 196         bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
 197 #endif
 198         /*
 199          * avoid useless #gp exceptions - mask reserved bits
 200          */
 201         fx->fx_mxcsr &= sse_mxcsr_mask;
 202 }
 203 
 204 /*
 205  * Map from an fxsave-format save area into a fpregset_t
 206  */
 207 static void
 208 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
 209 {
 210 #if defined(__amd64)
 211         bcopy(fx, fp, sizeof (*fx));
 212 #else
 213         struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state;
 214 
 215         fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
 216         fc->mxcsr = fx->fx_mxcsr;
 217         bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
 218 #endif
 219 }
 220 
 221 #if defined(_SYSCALL32_IMPL)
 222 static void
 223 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
 224 {
 225         const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 226 
 227         fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
 228         /*
 229          * avoid useless #gp exceptions - mask reserved bits
 230          */
 231         fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
 232         bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
 233 }
 234 
 235 static void
 236 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
 237 {
 238         struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
 239 
 240         fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
 241         fc->mxcsr = fx->fx_mxcsr;
 242         bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
 243 }
 244 
 245 static void
 246 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
 247 {
 248         fxsave_to_fpregset32((struct fxsave_state *)src, dst);
 249         dst->fp_reg_set.fpchip_state.status =
 250             src->fp_reg_set.fpchip_state.status;
 251         dst->fp_reg_set.fpchip_state.xstatus =
 252             src->fp_reg_set.fpchip_state.xstatus;
 253 }
 254 
 255 static void
 256 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
 257 {
 258         fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
 259         dst->fp_reg_set.fpchip_state.status =
 260             src->fp_reg_set.fpchip_state.status;
 261         dst->fp_reg_set.fpchip_state.xstatus =
 262             src->fp_reg_set.fpchip_state.xstatus;
 263 }
 264 #endif
 265 
 266 /*
 267  * Set floating-point registers from a native fpregset_t.
 268  */
 269 void
 270 setfpregs(klwp_t *lwp, fpregset_t *fp)
 271 {
 272         struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
 273 
 274         if (fpu->fpu_flags & FPU_EN) {
 275                 if (!(fpu->fpu_flags & FPU_VALID)) {
 276                         /*
 277                          * FPU context is still active, release the
 278                          * ownership.
 279                          */
 280                         fp_free(fpu, 0);
 281                 }
 282         }
 283         /*
 284          * Else: if we are trying to change the FPU state of a thread which
 285          * hasn't yet initialized floating point, store the state in
 286          * the pcb and indicate that the state is valid.  When the
 287          * thread enables floating point, it will use this state instead
 288          * of the default state.
 289          */
 290 
 291         switch (fp_save_mech) {
 292 #if defined(__i386)
 293         case FP_FNSAVE:
 294                 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn,
 295                     sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
 296                 break;
 297 #endif
 298         case FP_FXSAVE:
 299                 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx);
 300                 fpu->fpu_regs.kfpu_xstatus =
 301                     fp->fp_reg_set.fpchip_state.xstatus;
 302                 break;
 303 
 304         case FP_XSAVE:
 305                 fpregset_to_fxsave(fp,
 306                     &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave);
 307                 fpu->fpu_regs.kfpu_xstatus =
 308                     fp->fp_reg_set.fpchip_state.xstatus;
 309                 fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |=
 310                     (XFEATURE_LEGACY_FP | XFEATURE_SSE);
 311                 break;
 312         default:
 313                 panic("Invalid fp_save_mech");
 314                 /*NOTREACHED*/
 315         }
 316 
 317         fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status;
 318         fpu->fpu_flags |= FPU_VALID;
 319 }
 320 
 321 /*
 322  * Get floating-point registers into a native fpregset_t.
 323  */
 324 void
 325 getfpregs(klwp_t *lwp, fpregset_t *fp)
 326 {
 327         struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu;
 328 
 329         kpreempt_disable();
 330         if (fpu->fpu_flags & FPU_EN) {
 331                 /*
 332                  * If we have FPU hw and the thread's pcb doesn't have
 333                  * a valid FPU state then get the state from the hw.
 334                  */
 335                 if (fpu_exists && ttolwp(curthread) == lwp &&
 336                     !(fpu->fpu_flags & FPU_VALID))
 337                         fp_save(fpu); /* get the current FPU state */
 338         }
 339 
 340         /*
 341          * There are 3 possible cases we have to be aware of here:
 342          *
 343          * 1. FPU is enabled.  FPU state is stored in the current LWP.
 344          *
 345          * 2. FPU is not enabled, and there have been no intervening /proc
 346          *    modifications.  Return initial FPU state.
 347          *
 348          * 3. FPU is not enabled, but a /proc consumer has modified FPU state.
 349          *    FPU state is stored in the current LWP.
 350          */
 351         if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) {
 352                 /*
 353                  * Cases 1 and 3.
 354                  */
 355                 switch (fp_save_mech) {
 356 #if defined(__i386)
 357                 case FP_FNSAVE:
 358                         bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp,
 359                             sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn));
 360                         break;
 361 #endif
 362                 case FP_FXSAVE:
 363                         fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp);
 364                         fp->fp_reg_set.fpchip_state.xstatus =
 365                             fpu->fpu_regs.kfpu_xstatus;
 366                         break;
 367                 case FP_XSAVE:
 368                         fxsave_to_fpregset(
 369                             &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp);
 370                         fp->fp_reg_set.fpchip_state.xstatus =
 371                             fpu->fpu_regs.kfpu_xstatus;
 372                         break;
 373                 default:
 374                         panic("Invalid fp_save_mech");
 375                         /*NOTREACHED*/
 376                 }
 377                 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
 378         } else {
 379                 /*
 380                  * Case 2.
 381                  */
 382                 switch (fp_save_mech) {
 383 #if defined(__i386)
 384                 case FP_FNSAVE:
 385                         bcopy(&x87_initial, fp, sizeof (x87_initial));
 386                         break;
 387 #endif
 388                 case FP_FXSAVE:
 389                 case FP_XSAVE:
 390                         /*
 391                          * For now, we don't have any AVX specific field in ABI.
 392                          * If we add any in the future, we need to initial them
 393                          * as well.
 394                          */
 395                         fxsave_to_fpregset(&sse_initial, fp);
 396                         fp->fp_reg_set.fpchip_state.xstatus =
 397                             fpu->fpu_regs.kfpu_xstatus;
 398                         break;
 399                 default:
 400                         panic("Invalid fp_save_mech");
 401                         /*NOTREACHED*/
 402                 }
 403                 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status;
 404         }
 405         kpreempt_enable();
 406 }
 407 
 408 #if defined(_SYSCALL32_IMPL)
 409 
 410 /*
 411  * Set floating-point registers from an fpregset32_t.
 412  */
 413 void
 414 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
 415 {
 416         fpregset_t fpregs;
 417 
 418         fpregset_32ton(fp, &fpregs);
 419         setfpregs(lwp, &fpregs);
 420 }
 421 
 422 /*
 423  * Get floating-point registers into an fpregset32_t.
 424  */
 425 void
 426 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
 427 {
 428         fpregset_t fpregs;
 429 
 430         getfpregs(lwp, &fpregs);
 431         fpregset_nto32(&fpregs, fp);
 432 }
 433 
 434 #endif  /* _SYSCALL32_IMPL */
 435 
 436 /*
 437  * Return the general registers
 438  */
 439 void
 440 getgregs(klwp_t *lwp, gregset_t grp)
 441 {
 442         struct regs *rp = lwptoregs(lwp);
 443 #if defined(__amd64)
 444         struct pcb *pcb = &lwp->lwp_pcb;
 445         int thisthread = lwptot(lwp) == curthread;
 446 
 447         grp[REG_RDI] = rp->r_rdi;
 448         grp[REG_RSI] = rp->r_rsi;
 449         grp[REG_RDX] = rp->r_rdx;
 450         grp[REG_RCX] = rp->r_rcx;
 451         grp[REG_R8] = rp->r_r8;
 452         grp[REG_R9] = rp->r_r9;
 453         grp[REG_RAX] = rp->r_rax;
 454         grp[REG_RBX] = rp->r_rbx;
 455         grp[REG_RBP] = rp->r_rbp;
 456         grp[REG_R10] = rp->r_r10;
 457         grp[REG_R11] = rp->r_r11;
 458         grp[REG_R12] = rp->r_r12;
 459         grp[REG_R13] = rp->r_r13;
 460         grp[REG_R14] = rp->r_r14;
 461         grp[REG_R15] = rp->r_r15;
 462         grp[REG_FSBASE] = pcb->pcb_fsbase;
 463         grp[REG_GSBASE] = pcb->pcb_gsbase;
 464         if (thisthread)
 465                 kpreempt_disable();
 466         if (pcb->pcb_rupdate == 1) {
 467                 grp[REG_DS] = pcb->pcb_ds;
 468                 grp[REG_ES] = pcb->pcb_es;
 469                 grp[REG_FS] = pcb->pcb_fs;
 470                 grp[REG_GS] = pcb->pcb_gs;
 471         } else {
 472                 grp[REG_DS] = rp->r_ds;
 473                 grp[REG_ES] = rp->r_es;
 474                 grp[REG_FS] = rp->r_fs;
 475                 grp[REG_GS] = rp->r_gs;
 476         }
 477         if (thisthread)
 478                 kpreempt_enable();
 479         grp[REG_TRAPNO] = rp->r_trapno;
 480         grp[REG_ERR] = rp->r_err;
 481         grp[REG_RIP] = rp->r_rip;
 482         grp[REG_CS] = rp->r_cs;
 483         grp[REG_SS] = rp->r_ss;
 484         grp[REG_RFL] = rp->r_rfl;
 485         grp[REG_RSP] = rp->r_rsp;
 486 #else
 487         bcopy(&rp->r_gs, grp, sizeof (gregset_t));
 488 #endif
 489 }
 490 
 491 #if defined(_SYSCALL32_IMPL)
 492 
 493 void
 494 getgregs32(klwp_t *lwp, gregset32_t grp)
 495 {
 496         struct regs *rp = lwptoregs(lwp);
 497         struct pcb *pcb = &lwp->lwp_pcb;
 498         int thisthread = lwptot(lwp) == curthread;
 499 
 500         if (thisthread)
 501                 kpreempt_disable();
 502         if (pcb->pcb_rupdate == 1) {
 503                 grp[GS] = (uint16_t)pcb->pcb_gs;
 504                 grp[FS] = (uint16_t)pcb->pcb_fs;
 505                 grp[DS] = (uint16_t)pcb->pcb_ds;
 506                 grp[ES] = (uint16_t)pcb->pcb_es;
 507         } else {
 508                 grp[GS] = (uint16_t)rp->r_gs;
 509                 grp[FS] = (uint16_t)rp->r_fs;
 510                 grp[DS] = (uint16_t)rp->r_ds;
 511                 grp[ES] = (uint16_t)rp->r_es;
 512         }
 513         if (thisthread)
 514                 kpreempt_enable();
 515         grp[EDI] = (greg32_t)rp->r_rdi;
 516         grp[ESI] = (greg32_t)rp->r_rsi;
 517         grp[EBP] = (greg32_t)rp->r_rbp;
 518         grp[ESP] = 0;
 519         grp[EBX] = (greg32_t)rp->r_rbx;
 520         grp[EDX] = (greg32_t)rp->r_rdx;
 521         grp[ECX] = (greg32_t)rp->r_rcx;
 522         grp[EAX] = (greg32_t)rp->r_rax;
 523         grp[TRAPNO] = (greg32_t)rp->r_trapno;
 524         grp[ERR] = (greg32_t)rp->r_err;
 525         grp[EIP] = (greg32_t)rp->r_rip;
 526         grp[CS] = (uint16_t)rp->r_cs;
 527         grp[EFL] = (greg32_t)rp->r_rfl;
 528         grp[UESP] = (greg32_t)rp->r_rsp;
 529         grp[SS] = (uint16_t)rp->r_ss;
 530 }
 531 
 532 void
 533 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
 534 {
 535         mcontext_t *dmc = &dst->uc_mcontext;
 536         const mcontext32_t *smc = &src->uc_mcontext;
 537 
 538         bzero(dst, sizeof (*dst));
 539         dst->uc_flags = src->uc_flags;
 540         dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
 541 
 542         bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
 543 
 544         dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
 545         dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
 546         dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
 547 
 548         dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
 549         dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
 550         dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
 551         dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
 552         dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
 553         dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
 554         dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
 555         dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
 556         dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
 557         dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
 558         dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
 559         dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
 560         dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
 561         dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
 562         dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
 563         dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
 564         dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
 565         dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
 566 
 567         /*
 568          * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
 569          * otherwise there is no guarantee that anything in fpregs is valid.
 570          */
 571         if (src->uc_flags & UC_FPU)
 572                 fpregset_32ton(&src->uc_mcontext.fpregs,
 573                     &dst->uc_mcontext.fpregs);
 574 }
 575 
 576 #endif  /* _SYSCALL32_IMPL */
 577 
 578 /*
 579  * Return the user-level PC.
 580  * If in a system call, return the address of the syscall trap.
 581  */
 582 greg_t
 583 getuserpc()
 584 {
 585         greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
 586         uint32_t insn;
 587 
 588         if (curthread->t_sysnum == 0)
 589                 return (upc);
 590 
 591         /*
 592          * We might've gotten here from sysenter (0xf 0x34),
 593          * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
 594          *
 595          * Go peek at the binary to figure it out..
 596          */
 597         if (fuword32((void *)(upc - 2), &insn) != -1 &&
 598             (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
 599                 return (upc - 2);
 600         return (upc - 7);
 601 }
 602 
 603 /*
 604  * Protect segment registers from non-user privilege levels and GDT selectors
 605  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
 606  * selector is non-null and not USER_CS/USER_DS, we make sure that the
 607  * TI bit is set to point into the LDT and that the RPL is set to 3.
 608  *
 609  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
 610  * also explicitly zero the top 16 bits since they may be coming from the
 611  * user's address space via setcontext(2) or /proc.
 612  *
 613  * Note about null selector. When running on the hypervisor if we allow a
 614  * process to set its %cs to null selector with RPL of 0 the hypervisor will
 615  * crash the domain. If running on bare metal we would get a #gp fault and
 616  * be able to kill the process and continue on. Therefore we make sure to
 617  * force RPL to SEL_UPL even for null selector when setting %cs.
 618  */
 619 
 620 #if defined(IS_CS) || defined(IS_NOT_CS)
 621 #error  "IS_CS and IS_NOT_CS already defined"
 622 #endif
 623 
 624 #define IS_CS           1
 625 #define IS_NOT_CS       0
 626 
 627 /*ARGSUSED*/
 628 static greg_t
 629 fix_segreg(greg_t sr, int iscs, model_t datamodel)
 630 {
 631         switch (sr &= 0xffff) {
 632 
 633         case 0:
 634                 if (iscs == IS_CS)
 635                         return (0 | SEL_UPL);
 636                 else
 637                         return (0);
 638 
 639 #if defined(__amd64)
 640         /*
 641          * If lwp attempts to switch data model then force their
 642          * code selector to be null selector.
 643          */
 644         case U32CS_SEL:
 645                 if (datamodel == DATAMODEL_NATIVE)
 646                         return (0 | SEL_UPL);
 647                 else
 648                         return (sr);
 649 
 650         case UCS_SEL:
 651                 if (datamodel == DATAMODEL_ILP32)
 652                         return (0 | SEL_UPL);
 653 #elif defined(__i386)
 654         case UCS_SEL:
 655 #endif
 656         /*FALLTHROUGH*/
 657         case UDS_SEL:
 658         case LWPFS_SEL:
 659         case LWPGS_SEL:
 660         case SEL_UPL:
 661                 return (sr);
 662         default:
 663                 break;
 664         }
 665 
 666         /*
 667          * Force it into the LDT in ring 3 for 32-bit processes, which by
 668          * default do not have an LDT, so that any attempt to use an invalid
 669          * selector will reference the (non-existant) LDT, and cause a #gp
 670          * fault for the process.
 671          *
 672          * 64-bit processes get the null gdt selector since they
 673          * are not allowed to have a private LDT.
 674          */
 675 #if defined(__amd64)
 676         if (datamodel == DATAMODEL_ILP32) {
 677                 return (sr | SEL_TI_LDT | SEL_UPL);
 678         } else {
 679                 if (iscs == IS_CS)
 680                         return (0 | SEL_UPL);
 681                 else
 682                         return (0);
 683         }
 684 
 685 #elif defined(__i386)
 686         return (sr | SEL_TI_LDT | SEL_UPL);
 687 #endif
 688 }
 689 
 690 /*
 691  * Set general registers.
 692  */
 693 void
 694 setgregs(klwp_t *lwp, gregset_t grp)
 695 {
 696         struct regs *rp = lwptoregs(lwp);
 697         model_t datamodel = lwp_getdatamodel(lwp);
 698 
 699 #if defined(__amd64)
 700         struct pcb *pcb = &lwp->lwp_pcb;
 701         int thisthread = lwptot(lwp) == curthread;
 702 
 703         if (datamodel == DATAMODEL_NATIVE) {
 704 
 705                 if (thisthread)
 706                         (void) save_syscall_args();     /* copy the args */
 707 
 708                 rp->r_rdi = grp[REG_RDI];
 709                 rp->r_rsi = grp[REG_RSI];
 710                 rp->r_rdx = grp[REG_RDX];
 711                 rp->r_rcx = grp[REG_RCX];
 712                 rp->r_r8 = grp[REG_R8];
 713                 rp->r_r9 = grp[REG_R9];
 714                 rp->r_rax = grp[REG_RAX];
 715                 rp->r_rbx = grp[REG_RBX];
 716                 rp->r_rbp = grp[REG_RBP];
 717                 rp->r_r10 = grp[REG_R10];
 718                 rp->r_r11 = grp[REG_R11];
 719                 rp->r_r12 = grp[REG_R12];
 720                 rp->r_r13 = grp[REG_R13];
 721                 rp->r_r14 = grp[REG_R14];
 722                 rp->r_r15 = grp[REG_R15];
 723                 rp->r_trapno = grp[REG_TRAPNO];
 724                 rp->r_err = grp[REG_ERR];
 725                 rp->r_rip = grp[REG_RIP];
 726                 /*
 727                  * Setting %cs or %ss to anything else is quietly but
 728                  * quite definitely forbidden!
 729                  */
 730                 rp->r_cs = UCS_SEL;
 731                 rp->r_ss = UDS_SEL;
 732                 rp->r_rsp = grp[REG_RSP];
 733 
 734                 if (thisthread)
 735                         kpreempt_disable();
 736 
 737                 pcb->pcb_ds = UDS_SEL;
 738                 pcb->pcb_es = UDS_SEL;
 739 
 740                 /*
 741                  * 64-bit processes -are- allowed to set their fsbase/gsbase
 742                  * values directly, but only if they're using the segment
 743                  * selectors that allow that semantic.
 744                  *
 745                  * (32-bit processes must use lwp_set_private().)
 746                  */
 747                 pcb->pcb_fsbase = grp[REG_FSBASE];
 748                 pcb->pcb_gsbase = grp[REG_GSBASE];
 749                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 750                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 751 
 752                 /*
 753                  * Ensure that we go out via update_sregs
 754                  */
 755                 pcb->pcb_rupdate = 1;
 756                 lwptot(lwp)->t_post_sys = 1;
 757                 if (thisthread)
 758                         kpreempt_enable();
 759 #if defined(_SYSCALL32_IMPL)
 760         } else {
 761                 rp->r_rdi = (uint32_t)grp[REG_RDI];
 762                 rp->r_rsi = (uint32_t)grp[REG_RSI];
 763                 rp->r_rdx = (uint32_t)grp[REG_RDX];
 764                 rp->r_rcx = (uint32_t)grp[REG_RCX];
 765                 rp->r_rax = (uint32_t)grp[REG_RAX];
 766                 rp->r_rbx = (uint32_t)grp[REG_RBX];
 767                 rp->r_rbp = (uint32_t)grp[REG_RBP];
 768                 rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
 769                 rp->r_err = (uint32_t)grp[REG_ERR];
 770                 rp->r_rip = (uint32_t)grp[REG_RIP];
 771 
 772                 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
 773                 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 774 
 775                 rp->r_rsp = (uint32_t)grp[REG_RSP];
 776 
 777                 if (thisthread)
 778                         kpreempt_disable();
 779 
 780                 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
 781                 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
 782 
 783                 /*
 784                  * (See fsbase/gsbase commentary above)
 785                  */
 786                 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
 787                 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
 788 
 789                 /*
 790                  * Ensure that we go out via update_sregs
 791                  */
 792                 pcb->pcb_rupdate = 1;
 793                 lwptot(lwp)->t_post_sys = 1;
 794                 if (thisthread)
 795                         kpreempt_enable();
 796 #endif
 797         }
 798 
 799         /*
 800          * Only certain bits of the flags register can be modified.
 801          */
 802         rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
 803             (grp[REG_RFL] & PSL_USERMASK);
 804 
 805 #elif defined(__i386)
 806 
 807         /*
 808          * Only certain bits of the flags register can be modified.
 809          */
 810         grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);
 811 
 812         /*
 813          * Copy saved registers from user stack.
 814          */
 815         bcopy(grp, &rp->r_gs, sizeof (gregset_t));
 816 
 817         rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
 818         rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
 819         rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
 820         rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
 821         rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
 822         rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);
 823 
 824 #endif  /* __i386 */
 825 }
 826 
 827 /*
 828  * Determine whether eip is likely to have an interrupt frame
 829  * on the stack.  We do this by comparing the address to the
 830  * range of addresses spanned by several well-known routines.
 831  */
 832 extern void _interrupt();
 833 extern void _allsyscalls();
 834 extern void _cmntrap();
 835 extern void fakesoftint();
 836 
 837 extern size_t _interrupt_size;
 838 extern size_t _allsyscalls_size;
 839 extern size_t _cmntrap_size;
 840 extern size_t _fakesoftint_size;
 841 
 842 /*
 843  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
 844  * Returns MIN(current stack depth, pcstack_limit).
 845  */
 846 int
 847 getpcstack(pc_t *pcstack, int pcstack_limit)
 848 {
 849         struct frame *fp = (struct frame *)getfp();
 850         struct frame *nextfp, *minfp, *stacktop;
 851         int depth = 0;
 852         int on_intr;
 853         uintptr_t pc;
 854 
 855         if ((on_intr = CPU_ON_INTR(CPU)) != 0)
 856                 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
 857         else
 858                 stacktop = (struct frame *)curthread->t_stk;
 859         minfp = fp;
 860 
 861         pc = ((struct regs *)fp)->r_pc;
 862 
 863         while (depth < pcstack_limit) {
 864                 nextfp = (struct frame *)fp->fr_savfp;
 865                 pc = fp->fr_savpc;
 866                 if (nextfp <= minfp || nextfp >= stacktop) {
 867                         if (on_intr) {
 868                                 /*
 869                                  * Hop from interrupt stack to thread stack.
 870                                  */
 871                                 stacktop = (struct frame *)curthread->t_stk;
 872                                 minfp = (struct frame *)curthread->t_stkbase;
 873                                 on_intr = 0;
 874                                 continue;
 875                         }
 876                         break;
 877                 }
 878                 pcstack[depth++] = (pc_t)pc;
 879                 fp = nextfp;
 880                 minfp = fp;
 881         }
 882         return (depth);
 883 }
 884 
 885 /*
 886  * The following ELF header fields are defined as processor-specific
 887  * in the V8 ABI:
 888  *
 889  *      e_ident[EI_DATA]        encoding of the processor-specific
 890  *                              data in the object file
 891  *      e_machine               processor identification
 892  *      e_flags                 processor-specific flags associated
 893  *                              with the file
 894  */
 895 
 896 /*
 897  * The value of at_flags reflects a platform's cpu module support.
 898  * at_flags is used to check for allowing a binary to execute and
 899  * is passed as the value of the AT_FLAGS auxiliary vector.
 900  */
 901 int at_flags = 0;
 902 
 903 /*
 904  * Check the processor-specific fields of an ELF header.
 905  *
 906  * returns 1 if the fields are valid, 0 otherwise
 907  */
 908 /*ARGSUSED2*/
 909 int
 910 elfheadcheck(
 911         unsigned char e_data,
 912         Elf32_Half e_machine,
 913         Elf32_Word e_flags)
 914 {
 915         if (e_data != ELFDATA2LSB)
 916                 return (0);
 917 #if defined(__amd64)
 918         if (e_machine == EM_AMD64)
 919                 return (1);
 920 #endif
 921         return (e_machine == EM_386);
 922 }
 923 
 924 uint_t auxv_hwcap_include = 0;  /* patch to enable unrecognized features */
 925 uint_t auxv_hwcap_exclude = 0;  /* patch for broken cpus, debugging */
 926 #if defined(_SYSCALL32_IMPL)
 927 uint_t auxv_hwcap32_include = 0;        /* ditto for 32-bit apps */
 928 uint_t auxv_hwcap32_exclude = 0;        /* ditto for 32-bit apps */
 929 #endif
 930 
 931 /*
 932  * Gather information about the processor and place it into auxv_hwcap
 933  * so that it can be exported to the linker via the aux vector.
 934  *
 935  * We use this seemingly complicated mechanism so that we can ensure
 936  * that /etc/system can be used to override what the system can or
 937  * cannot discover for itself.
 938  */
 939 void
 940 bind_hwcap(void)
 941 {
 942         uint_t cpu_hwcap_flags = cpuid_pass4(NULL);
 943 
 944         auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags) &
 945             ~auxv_hwcap_exclude;
 946 
 947 #if defined(__amd64)
 948         /*
 949          * On AMD processors, sysenter just doesn't work at all
 950          * when the kernel is in long mode.  On IA-32e processors
 951          * it does, but there's no real point in all the alternate
 952          * mechanism when syscall works on both.
 953          *
 954          * Besides, the kernel's sysenter handler is expecting a
 955          * 32-bit lwp ...
 956          */
 957         auxv_hwcap &= ~AV_386_SEP;
 958 #else
 959         /*
 960          * 32-bit processes can -always- use the lahf/sahf instructions
 961          */
 962         auxv_hwcap |= AV_386_AHF;
 963 #endif
 964 
 965         if (auxv_hwcap_include || auxv_hwcap_exclude)
 966                 cmn_err(CE_CONT, "?user ABI extensions: %b\n",
 967                     auxv_hwcap, FMT_AV_386);
 968 
 969 #if defined(_SYSCALL32_IMPL)
 970         auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags) &
 971             ~auxv_hwcap32_exclude;
 972 
 973 #if defined(__amd64)
 974         /*
 975          * If this is an amd64 architecture machine from Intel, then
 976          * syscall -doesn't- work in compatibility mode, only sysenter does.
 977          *
 978          * Sigh.
 979          */
 980         if (!cpuid_syscall32_insn(NULL))
 981                 auxv_hwcap32 &= ~AV_386_AMD_SYSC;
 982 
 983         /*
 984          * 32-bit processes can -always- use the lahf/sahf instructions
 985          */
 986         auxv_hwcap32 |= AV_386_AHF;
 987 #endif
 988 
 989         if (auxv_hwcap32_include || auxv_hwcap32_exclude)
 990                 cmn_err(CE_CONT, "?32-bit user ABI extensions: %b\n",
 991                     auxv_hwcap32, FMT_AV_386);
 992 #endif
 993 }
 994 
 995 /*
 996  *      sync_icache() - this is called
 997  *      in proc/fs/prusrio.c. x86 has an unified cache and therefore
 998  *      this is a nop.
 999  */
1000 /* ARGSUSED */
1001 void
1002 sync_icache(caddr_t addr, uint_t len)
1003 {
1004         /* Do nothing for now */
1005 }
1006 
1007 /*ARGSUSED*/
1008 void
1009 sync_data_memory(caddr_t va, size_t len)
1010 {
1011         /* Not implemented for this platform */
1012 }
1013 
1014 int
1015 __ipltospl(int ipl)
1016 {
1017         return (ipltospl(ipl));
1018 }
1019 
1020 /*
1021  * The panic code invokes panic_saveregs() to record the contents of a
1022  * regs structure into the specified panic_data structure for debuggers.
1023  */
1024 void
1025 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1026 {
1027         panic_nv_t *pnv = PANICNVGET(pdp);
1028 
1029         struct cregs    creg;
1030 
1031         getcregs(&creg);
1032 
1033 #if defined(__amd64)
1034         PANICNVADD(pnv, "rdi", rp->r_rdi);
1035         PANICNVADD(pnv, "rsi", rp->r_rsi);
1036         PANICNVADD(pnv, "rdx", rp->r_rdx);
1037         PANICNVADD(pnv, "rcx", rp->r_rcx);
1038         PANICNVADD(pnv, "r8", rp->r_r8);
1039         PANICNVADD(pnv, "r9", rp->r_r9);
1040         PANICNVADD(pnv, "rax", rp->r_rax);
1041         PANICNVADD(pnv, "rbx", rp->r_rbx);
1042         PANICNVADD(pnv, "rbp", rp->r_rbp);
1043         PANICNVADD(pnv, "r10", rp->r_r10);
1044         PANICNVADD(pnv, "r10", rp->r_r10);
1045         PANICNVADD(pnv, "r11", rp->r_r11);
1046         PANICNVADD(pnv, "r12", rp->r_r12);
1047         PANICNVADD(pnv, "r13", rp->r_r13);
1048         PANICNVADD(pnv, "r14", rp->r_r14);
1049         PANICNVADD(pnv, "r15", rp->r_r15);
1050         PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1051         PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1052         PANICNVADD(pnv, "ds", rp->r_ds);
1053         PANICNVADD(pnv, "es", rp->r_es);
1054         PANICNVADD(pnv, "fs", rp->r_fs);
1055         PANICNVADD(pnv, "gs", rp->r_gs);
1056         PANICNVADD(pnv, "trapno", rp->r_trapno);
1057         PANICNVADD(pnv, "err", rp->r_err);
1058         PANICNVADD(pnv, "rip", rp->r_rip);
1059         PANICNVADD(pnv, "cs", rp->r_cs);
1060         PANICNVADD(pnv, "rflags", rp->r_rfl);
1061         PANICNVADD(pnv, "rsp", rp->r_rsp);
1062         PANICNVADD(pnv, "ss", rp->r_ss);
1063         PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1064         PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1065         PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1066         PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1067 #elif defined(__i386)
1068         PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1069         PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1070         PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1071         PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1072         PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1073         PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);
1074         PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1075         PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1076         PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1077         PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1078         PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1079         PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1080         PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1081         PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1082         PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1083         PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1084         PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1085         PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1086         PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1087         PANICNVADD(pnv, "gdt", creg.cr_gdt);
1088         PANICNVADD(pnv, "idt", creg.cr_idt);
1089 #endif  /* __i386 */
1090 
1091         PANICNVADD(pnv, "ldt", creg.cr_ldt);
1092         PANICNVADD(pnv, "task", creg.cr_task);
1093         PANICNVADD(pnv, "cr0", creg.cr_cr0);
1094         PANICNVADD(pnv, "cr2", creg.cr_cr2);
1095         PANICNVADD(pnv, "cr3", creg.cr_cr3);
1096         if (creg.cr_cr4)
1097                 PANICNVADD(pnv, "cr4", creg.cr_cr4);
1098 
1099         PANICNVSET(pdp, pnv);
1100 }
1101 
1102 #define TR_ARG_MAX 6    /* Max args to print, same as SPARC */
1103 
1104 #if !defined(__amd64)
1105 
1106 /*
1107  * Given a return address (%eip), determine the likely number of arguments
1108  * that were pushed on the stack prior to its execution.  We do this by
1109  * expecting that a typical call sequence consists of pushing arguments on
1110  * the stack, executing a call instruction, and then performing an add
1111  * on %esp to restore it to the value prior to pushing the arguments for
1112  * the call.  We attempt to detect such an add, and divide the addend
1113  * by the size of a word to determine the number of pushed arguments.
1114  *
1115  * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1116  * possible to reliably determine if a function took no arguments (i.e. was
1117  * void) because assembler routines do not reliably perform an add on %esp
1118  * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1119  * safer than returning 0.
1120  */
1121 static ulong_t
1122 argcount(uintptr_t eip)
1123 {
1124         const uint8_t *ins = (const uint8_t *)eip;
1125         ulong_t n;
1126 
1127         enum {
1128                 M_MODRM_ESP = 0xc4,     /* Mod/RM byte indicates %esp */
1129                 M_ADD_IMM32 = 0x81,     /* ADD imm32 to r/m32 */
1130                 M_ADD_IMM8  = 0x83      /* ADD imm8 to r/m32 */
1131         };
1132 
1133         if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1134                 return (TR_ARG_MAX);
1135 
1136         switch (ins[0]) {
1137         case M_ADD_IMM32:
1138                 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1139                 break;
1140 
1141         case M_ADD_IMM8:
1142                 n = ins[2];
1143                 break;
1144 
1145         default:
1146                 return (TR_ARG_MAX);
1147         }
1148 
1149         n /= sizeof (long);
1150         return (MIN(n, TR_ARG_MAX));
1151 }
1152 
1153 #endif  /* !__amd64 */
1154 
1155 /*
1156  * Print a stack backtrace using the specified frame pointer.  We delay two
1157  * seconds before continuing, unless this is the panic traceback.
1158  * If we are in the process of panicking, we also attempt to write the
1159  * stack backtrace to a staticly assigned buffer, to allow the panic
1160  * code to find it and write it in to uncompressed pages within the
1161  * system crash dump.
1162  * Note that the frame for the starting stack pointer value is omitted because
1163  * the corresponding %eip is not known.
1164  */
1165 
1166 extern char *dump_stack_scratch;
1167 
1168 #if defined(__amd64)
1169 
1170 void
1171 traceback(caddr_t fpreg)
1172 {
1173         struct frame    *fp = (struct frame *)fpreg;
1174         struct frame    *nextfp;
1175         uintptr_t       pc, nextpc;
1176         ulong_t         off;
1177         char            args[TR_ARG_MAX * 2 + 16], *sym;
1178         uint_t    offset = 0;
1179         uint_t    next_offset = 0;
1180         char        stack_buffer[1024];
1181 
1182         if (!panicstr)
1183                 printf("traceback: %%fp = %p\n", (void *)fp);
1184 
1185         if (panicstr && !dump_stack_scratch) {
1186                 printf("Warning - stack not written to the dump buffer\n");
1187         }
1188 
1189         fp = (struct frame *)plat_traceback(fpreg);
1190         if ((uintptr_t)fp < KERNELBASE)
1191                 goto out;
1192 
1193         pc = fp->fr_savpc;
1194         fp = (struct frame *)fp->fr_savfp;
1195 
1196         while ((uintptr_t)fp >= KERNELBASE) {
1197                 /*
1198                  * XX64 Until port is complete tolerate 8-byte aligned
1199                  * frame pointers but flag with a warning so they can
1200                  * be fixed.
1201                  */
1202                 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1203                         if (((uintptr_t)fp & (8 - 1)) == 0) {
1204                                 printf("  >> warning! 8-byte"
1205                                     " aligned %%fp = %p\n", (void *)fp);
1206                         } else {
1207                                 printf(
1208                                     "  >> mis-aligned %%fp = %p\n", (void *)fp);
1209                                 break;
1210                         }
1211                 }
1212 
1213                 args[0] = '\0';
1214                 nextpc = (uintptr_t)fp->fr_savpc;
1215                 nextfp = (struct frame *)fp->fr_savfp;
1216                 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1217                         printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1218                             mod_containing_pc((caddr_t)pc), sym, off, args);
1219                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1220                             "%s:%s+%lx (%s) | ",
1221                             mod_containing_pc((caddr_t)pc), sym, off, args);
1222                 } else {
1223                         printf("%016lx %lx (%s)\n",
1224                             (uintptr_t)fp, pc, args);
1225                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1226                             "%lx (%s) | ", pc, args);
1227                 }
1228 
1229                 if (panicstr && dump_stack_scratch) {
1230                         next_offset = offset + strlen(stack_buffer);
1231                         if (next_offset < STACK_BUF_SIZE) {
1232                                 bcopy(stack_buffer, dump_stack_scratch + offset,
1233                                     strlen(stack_buffer));
1234                                 offset = next_offset;
1235                         } else {
1236                                 /*
1237                                  * In attempting to save the panic stack
1238                                  * to the dumpbuf we have overflowed that area.
1239                                  * Print a warning and continue to printf the
1240                                  * stack to the msgbuf
1241                                  */
1242                                 printf("Warning: stack in the dump buffer"
1243                                     " may be incomplete\n");
1244                                 offset = next_offset;
1245                         }
1246                 }
1247 
1248                 pc = nextpc;
1249                 fp = nextfp;
1250         }
1251 out:
1252         if (!panicstr) {
1253                 printf("end of traceback\n");
1254                 DELAY(2 * MICROSEC);
1255         } else if (dump_stack_scratch) {
1256                 dump_stack_scratch[offset] = '\0';
1257         }
1258 }
1259 
1260 #elif defined(__i386)
1261 
1262 void
1263 traceback(caddr_t fpreg)
1264 {
1265         struct frame *fp = (struct frame *)fpreg;
1266         struct frame *nextfp, *minfp, *stacktop;
1267         uintptr_t pc, nextpc;
1268         uint_t    offset = 0;
1269         uint_t    next_offset = 0;
1270         char        stack_buffer[1024];
1271 
1272         cpu_t *cpu;
1273 
1274         /*
1275          * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'.
1276          */
1277         char args[TR_ARG_MAX * 2 + 8], *p;
1278 
1279         int on_intr;
1280         ulong_t off;
1281         char *sym;
1282 
1283         if (!panicstr)
1284                 printf("traceback: %%fp = %p\n", (void *)fp);
1285 
1286         if (panicstr && !dump_stack_scratch) {
1287                 printf("Warning - stack not written to the dumpbuf\n");
1288         }
1289 
1290         /*
1291          * If we are panicking, all high-level interrupt information in
1292          * CPU was overwritten.  panic_cpu has the correct values.
1293          */
1294         kpreempt_disable();                     /* prevent migration */
1295 
1296         cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;
1297 
1298         if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1299                 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1300         else
1301                 stacktop = (struct frame *)curthread->t_stk;
1302 
1303         kpreempt_enable();
1304 
1305         fp = (struct frame *)plat_traceback(fpreg);
1306         if ((uintptr_t)fp < KERNELBASE)
1307                 goto out;
1308 
1309         minfp = fp;     /* Baseline minimum frame pointer */
1310         pc = fp->fr_savpc;
1311         fp = (struct frame *)fp->fr_savfp;
1312 
1313         while ((uintptr_t)fp >= KERNELBASE) {
1314                 ulong_t argc;
1315                 long *argv;
1316 
1317                 if (fp <= minfp || fp >= stacktop) {
1318                         if (on_intr) {
1319                                 /*
1320                                  * Hop from interrupt stack to thread stack.
1321                                  */
1322                                 stacktop = (struct frame *)curthread->t_stk;
1323                                 minfp = (struct frame *)curthread->t_stkbase;
1324                                 on_intr = 0;
1325                                 continue;
1326                         }
1327                         break; /* we're outside of the expected range */
1328                 }
1329 
1330                 if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1331                         printf("  >> mis-aligned %%fp = %p\n", (void *)fp);
1332                         break;
1333                 }
1334 
1335                 nextpc = fp->fr_savpc;
1336                 nextfp = (struct frame *)fp->fr_savfp;
1337                 argc = argcount(nextpc);
1338                 argv = (long *)((char *)fp + sizeof (struct frame));
1339 
1340                 args[0] = '\0';
1341                 p = args;
1342                 while (argc-- > 0 && argv < (long *)stacktop) {
1343                         p += snprintf(p, args + sizeof (args) - p,
1344                             "%s%lx", (p == args) ? "" : ", ", *argv++);
1345                 }
1346 
1347                 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1348                         printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1349                             mod_containing_pc((caddr_t)pc), sym, off, args);
1350                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1351                             "%s:%s+%lx (%s) | ",
1352                             mod_containing_pc((caddr_t)pc), sym, off, args);
1353 
1354                 } else {
1355                         printf("%08lx %lx (%s)\n",
1356                             (uintptr_t)fp, pc, args);
1357                         (void) snprintf(stack_buffer, sizeof (stack_buffer),
1358                             "%lx (%s) | ", pc, args);
1359 
1360                 }
1361 
1362                 if (panicstr && dump_stack_scratch) {
1363                         next_offset = offset + strlen(stack_buffer);
1364                         if (next_offset < STACK_BUF_SIZE) {
1365                                 bcopy(stack_buffer, dump_stack_scratch + offset,
1366                                     strlen(stack_buffer));
1367                                 offset = next_offset;
1368                         } else {
1369                                 /*
1370                                  * In attempting to save the panic stack
1371                                  * to the dumpbuf we have overflowed that area.
1372                                  * Print a warning and continue to printf the
1373                                  * stack to the msgbuf
1374                                  */
1375                                 printf("Warning: stack in the dumpbuf"
1376                                     " may be incomplete\n");
1377                                 offset = next_offset;
1378                         }
1379                 }
1380 
1381                 minfp = fp;
1382                 pc = nextpc;
1383                 fp = nextfp;
1384         }
1385 out:
1386         if (!panicstr) {
1387                 printf("end of traceback\n");
1388                 DELAY(2 * MICROSEC);
1389         } else if (dump_stack_scratch) {
1390                 dump_stack_scratch[offset] = '\0';
1391         }
1392 
1393 }
1394 
1395 #endif  /* __i386 */
1396 
1397 /*
1398  * Generate a stack backtrace from a saved register set.
1399  */
1400 void
1401 traceregs(struct regs *rp)
1402 {
1403         traceback((caddr_t)rp->r_fp);
1404 }
1405 
1406 void
1407 exec_set_sp(size_t stksize)
1408 {
1409         klwp_t *lwp = ttolwp(curthread);
1410 
1411         lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1412 }
1413 
1414 hrtime_t
1415 gethrtime_waitfree(void)
1416 {
1417         return (dtrace_gethrtime());
1418 }
1419 
1420 hrtime_t
1421 gethrtime(void)
1422 {
1423         return (gethrtimef());
1424 }
1425 
1426 hrtime_t
1427 gethrtime_unscaled(void)
1428 {
1429         return (gethrtimeunscaledf());
1430 }
1431 
1432 void
1433 scalehrtime(hrtime_t *hrt)
1434 {
1435         scalehrtimef(hrt);
1436 }
1437 
1438 uint64_t
1439 unscalehrtime(hrtime_t nsecs)
1440 {
1441         return (unscalehrtimef(nsecs));
1442 }
1443 
1444 void
1445 gethrestime(timespec_t *tp)
1446 {
1447         gethrestimef(tp);
1448 }
1449 
1450 #if defined(__amd64)
1451 /*
1452  * Part of the implementation of hres_tick(); this routine is
1453  * easier in C than assembler .. called with the hres_lock held.
1454  *
1455  * XX64 Many of these timekeeping variables need to be extern'ed in a header
1456  */
1457 
1458 #include <sys/time.h>
1459 #include <sys/machlock.h>
1460 
1461 extern int one_sec;
1462 extern int max_hres_adj;
1463 
1464 void
1465 __adj_hrestime(void)
1466 {
1467         long long adj;
1468 
1469         if (hrestime_adj == 0)
1470                 adj = 0;
1471         else if (hrestime_adj > 0) {
1472                 if (hrestime_adj < max_hres_adj)
1473                         adj = hrestime_adj;
1474                 else
1475                         adj = max_hres_adj;
1476         } else {
1477                 if (hrestime_adj < -max_hres_adj)
1478                         adj = -max_hres_adj;
1479                 else
1480                         adj = hrestime_adj;
1481         }
1482 
1483         timedelta -= adj;
1484         hrestime_adj = timedelta;
1485         hrestime.tv_nsec += adj;
1486 
1487         while (hrestime.tv_nsec >= NANOSEC) {
1488                 one_sec++;
1489                 hrestime.tv_sec++;
1490                 hrestime.tv_nsec -= NANOSEC;
1491         }
1492 }
1493 #endif
1494 
1495 /*
1496  * Wrapper functions to maintain backwards compability
1497  */
1498 int
1499 xcopyin(const void *uaddr, void *kaddr, size_t count)
1500 {
1501         return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1502 }
1503 
1504 int
1505 xcopyout(const void *kaddr, void *uaddr, size_t count)
1506 {
1507         return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1508 }